|
|||||||||||
|
|
![]() |
§ 1. Основные понятия и теоремыПункт 2. Наибольший общий делитель.Не затягивая развития событий, начнем сразу с определения. Определение. Число d О Z , делящее одновременно числа а , b , c , ... , k О Z , называется общим делителем этих чисел. Наибольшее d с таким свойством называется наибольшим общим делителем. Обозначение: d = ( a , b , c , ..., k ) . Перечислим, кое-где доказывая, основные свойства наибольшего общего делителя. Первое свойство, ввиду его важности, окрестим теоремой. Она покажет нам, как устроен наибольший общий делитель двух целых чисел. Теорема (Свойство 1) . Если ( a , b ) = d , то найдутся такие целые числа u и v , что d = au + bv . Доказательство . Рассмотрим множество P = { au + bv з u,v О Z }. Очевидно, что P Н Z , а знатоки алгебры могут проверить, что P – идеал в Z . Очевидно, что a , b , 0 О P . Пусть x , y О P и y № 0 . Тогда остаток от деления x на y принадлежит P . Действительно: x = yq + r , 0 Ј r < y , r = x – yq = ( au 1 + bv 1 ) – ( au 2 + bv 2 ) q = a ( u 1 – u 2 q )+ b ( v 1 – v 2 q ) О P . Пусть d О P - наименьшее положительное число из P (призадумайтесь, почему такое имеется!). Тогда а делится на d . В самом деле, a = dq + r 1 , 0 Ј r 1 < d , a О P , d О P , значит r 1 О P , следовательно r 1 = 0. Аналогичными рассуждениями получается, что b делится на d , значит d - общий делитель a и b . Далее, раз d О P , то d = au 0 + bv 0 . Если теперь d 1 - общий делитель a и b , то d 1 | ( au 0 + bv 0 ), т.е. d 1 | d . Значит d і d 1 и d - наибольший общий делитель. Ё Свойство 2 . Для любых целых чисел а и k , очевидно, справедливо: ( а , kа ) = а ; (1, а ) = 1. Свойство 3 . Если a = bq + c , то совокупность общих делителей a и b совпадает с совокупностью общих делителей b и с , в частности, ( a , b ) = ( b , c ). Доказательство. Пусть d | a , d | b , тогда d | c . Пусть d | c , d | b , тогда d | a . Ё Конечно, я привел здесь это "крутое" доказательство не потому, что читатели не смогли бы его придумать самостоятельно, а потому, что мне хочется, опять-таки, проиллюстрировать это доказательство на древнегреческий лад. Посмотрите на рис. 2:
Рис. 2 Если d целое число раз укладывается в а и в b , то, очевидно, что d обязано целое число раз уложиться и в с . Наглядная иллюстрация! Спасибо грекам. Свойство 4 . Пусть a , b и m - произвольные целые числа. Тогда ( am , bm ) = m ( a , b ). Доказательство. Если d - наибольший общий делитель чисел а и b , то dm | am и dm | bm , т.е. dm - делитель am и bm . Покажем, что dm - наибольший общий делитель этих чисел. Поскольку d - наибольший общий делитель чисел а и b , то, согласно свойству 1, для некоторых целых чисел u и v выполнено равенство d = au + bv . Умножив это равенство на m , получим равенство: dm = amu + bmv . Видно, что если некоторое число s делит одновременно am и bm , то s обязано делить и dm , т.е. s Ј dm , следовательно, dm - наибольший общий делитель. Ё Свойство 5 . Пусть s - делитель а и b . Тогда:
Доказательство .
Свойство 6 . Очевидно теперь, что
Свойство 7 . Если ( a , b ) = 1, то ( ac , b ) = ( c , b ). Доказательство . Пусть ( c, b ) = d . Имеем: d | b , d | c , следовательно d | ac , т.е. d - делитель ас и b . Пусть теперь ( ac , b ) = s . Имеем: s | b , s | ac , s - делитель b , т.е. либо s = 1, либо s не делит а . Это означает, что s | c , значит s | d . Итак, d и s делятся друг на друга, т.е. d = s . Ё Что еще сказать в этом пункте? Да, пожалуй, больше и нечего.
|